Abstract
First‐principles calculations of work function tuning induced by different chemical terminations on Si(100) surface are presented and discussed. We find that the presence of halogen atoms (I, Br, Cl, and F) leads to an increase of the work function if compared to the fully hydrogenated surface. This is a quite general effect and is directly linked to the chemisorbed atoms electronegativity as well as to the charge redistribution at the interface. All these results are examined with respect to previous theoretical works and experimental data obtained for the (100) as well as other Si surface orientations. Based on this analysis, we argue that the changes in the electronic properties caused by variations of the interfacial chemistry strongly depend on the chemisorbed species and much less on the surface crystal orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.