Abstract

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is a promising electrode material for organic electronic devices due to its high conductivity, good mechanical flexibility, and feasibility of easy patterning with various printing methods. The work function of PEDOT:PSS needs to be increased for efficient hole injection, and the addition of a fluorine-containing material has been reported to increase the work function of PEDOT:PSS. However, it remains a challenge to print PEDOT:PSS electrodes while simultaneously tuning their work functions. Here, we report work function tunable PEDOT:PSS/Nafion source/drain electrodes formed by electrohydrodynamic printing technique with PEDOT:PSS/Nafion mixture solutions for highly stable bottom-contact organic field-effect transistors (OFETs). The surface properties and work function of the printed electrode can be controlled by varying the Nafion ratio, due to the vertical phase separation of the PEDOT:PSS/Nafion. The PEDOT:PSS/Nafion electrodes exhibit a low hole injection barrier, which leads to efficient charge carrier injection from the electrode to the semiconductor. As a result, pentacene-based OFETs with PEDOT:PSS/Nafion electrodes show increased charge carrier mobilities of 0.39 cm2/(V·s) compared to those of devices with neat PEDOT:PSS electrodes (0.021 cm2/(V·s)). Moreover, the gate-bias stress stability of the OFETs is remarkably improved by employing PEDOT:PSS/Nafion electrodes, as demonstrated by a reduction of the threshold voltage shift from -1.84 V to -0.28 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call