Abstract

The influence of isopropanol (IPA) addition on the viscoelastic behavior of hybrid hydrogels which were prepared from chemically cross-linked copolymers of N,N-dimethylacrylamide (DMA), 2-(N-ethylperfluorooctanesulfonamido)ethyl methacrylate (FOSM) and cinnamoyloxyethyl acrylate was investigated by dynamic oscillatory shear. The hybrid gels were composed of a supramolecular network formed by phase-separated FOSM nanodomains that served as physical cross-links and a chemical network derived from photo-cross-linking the cinnamate groups. The linear viscoelastic (LVE) behavior of the gels was tunable by changing the solvent ratio (IPA/water) and/or temperature. When the swelling solvent was pure water or pure IPA, the materials were hydrogels and organogels, respectively. When the IPA concentration increased from a molar ratio of IPA:FOSM of zero to 80:1, the cross-link density of the gels decreased due to weakening of the physical network as a result of solvation of the hydrophobic interactions by IPA. Abov...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.