Abstract

The adverse macrophage-mediated immune response elicited by the surface of polyetheretherketone (PEEK) is responsible for the formation of fibrous encapsulation and resulting inferior osseointegration of PEEK implants in the dental and orthopedic fields. Therefore, endowing the PEEK surface with immunomodulatory ability is an appealing strategy to enhance implant-bone integration. Herein, a reliable and cost-effective method to construct adherent films with tunable nanoporous structures on PEEK is described. The functionalized surface not only suppresses the acute inflammatory response of macrophages, but also provides a favorable milieu for osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Whole genome expression analysis reveals that the suppression effect arises from synergistic inhibition of focal adhesion, Toll-like receptor, and NOD-like receptor signaling pathways, as well as the attenuating loop through the JAK-STAT and TNF signaling pathways in macrophages. Further in vivo studies confirm that the functionalized surface induces less fibrous capsule formation and an improved bone regeneration. The nanoporous films fabricated on PEEK harmonize the early macrophage-mediated inflammatory response and subsequent hBMSCs-centered osteogenic functions consequently yielding superior osseointegration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.