Abstract
Silylation of Pd/SiO 2 catalysts increases the selectivity toward alcohols in the reduction of aromatic ketones. This work demonstrates that the selectivity is directly related to the adsorption strength of the alcohol on the surface of the support relative to the adsorption strength of the ketone. This observation can be explained by interaction of the support coverage with the metal coverage. Silylation yields a more hydrophobic support, on which the aromatic alcohol adsorbs more weakly relative to the ketone, in turn decreasing the amount of the alcohol adsorbed on the metal and thus suppressing the consecutive reduction of the alcohol. Silylation was carried out by using di-alkyl (dichlorodimethylsilane) and tri-alkyl (hexamethyldisilazane and hexamethyldisilane) silylating agents. Hexamethyldisilazane provided to be the most effective agent in terms of incorporation of methyl groups, catalyst hydrophobicity, and stability. Selective hydrogenation of 4-isobutyl acetophenone (4-IBAP) to 4-isobutylphenyl ethanol (4-IBPE) revealed that not only was the fresh hexamethyldisilazane-silylated Pd/SiO 2 catalyst more selective than the untreated catalyst, but also the silylated catalyst was much more selective after a deactivation–regeneration cycle than the untreated Pd/SiO 2 catalyst. The change in selectivity can be explained by a change in the relative adsorption strength of 4-IBPE over 4-IBAP on silylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.