Abstract

Phospholamban (PLN) is the endogenous inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the integral membrane enzyme responsible for 70% of the removal of Ca(2+) from the cytosol, inducing cardiac muscle relaxation in humans. Dysfunctions in SERCA:PLN interactions have been implicated as having a critical role in cardiac disease, and targeting Ca(2+) transport has been demonstrated to be a promising avenue in treating conditions of heart failure. Here, we designed a series of new mutants able to tune SERCA function, targeting the loop sequence that connects the transmembrane and cytoplasmic helices of PLN. We found that a variable degree of loss of inhibition mutants is attainable by engineering glycine mutations along PLN's loop domain. Remarkably, a double glycine mutation results in a complete loss-of-function mutant, fully mimicking the phosphorylated state of PLN. Using nuclear magnetic resonance spectroscopy, we rationalized the effects of these mutations in terms of entropic control on PLN function, whose inhibitory function can be modulated by increasing its conformational dynamics. However, if PLN mutations go past a threshold set by the phosphorylated state, they break the structural coupling between the transmembrane and cytoplasmic domains, resulting in a species that behaves as the inhibitory transmembrane domain alone. These studies provide new potential candidates for gene therapy to reverse the effects of heart failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.