Abstract
Undoped and Zn-doped Cu2O films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique with different Zn doping levels (0, 1, 2, 3, 5 and 10 wt%). The structural, optical, and surface morphological studies were carried out and reported. The structural study revealed that the crystalline quality is gradually enhanced up to 5 wt% of Zn doping level, and then quality begins to degrade for further increase in doping level. Moreover, the preferential orientation changes from (111) to (110) for the highest doping level were examined. Optical study shows that the transmittance (65%) and optical band gap values are maximum (2.41 eV) when the Zn doping level is at 5 wt%. The photoluminescence study confirms the presence of various defects in the Cu2O matrix and also the variation obtained in the optical band gap from the transmittance data. SEM images revealed the annealing-induced changes in the surface morphology of the films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.