Abstract
Estrone is an emerging contaminant found in waters and soils all over the world. Conventional water treatment methods are not suitable for estrone removal due to its nonpolarity and low bioavailability. Heterogeneous photocatalysis is a promising approach; however, pristine semiconductors need optimization for efficient estrone photodegradation. Herein, we compared Zn-Cr LDH/GCN heterostructures obtained by three different synthesis methods. The influence of the GCN content in the heterostructure on photoactivity was also tested. The morphology, structure, and electronic properties of the materials were analyzed and compared. The photocatalytic kinetic tests were conducted with 1 ppm of estrone in both UV and visible light, separately. The HLDH-G50 material, obtained by the hydrothermal route and containing 50 wt % of GCN exhibited the highest photocatalytic efficiency. After 1 h, 99.5% of the estrone was degraded in visible light. In UV light, the pollutant concentration was below the detection limit after 0.5 h. The superior effectiveness was caused by numerous factors such as high homogeneity of the formed heterostructure, lower band gap energy of hydrothermal LDH, and increased photocurrent. These characteristics led to prolonged lifetimes of charge carriers, a wider light absorption range, and uniformity of the material for predictable performance. This study highlights the importance of a proper heterostructure engineering strategy for acquiring highly effective photocatalysts designed for water purification. In particular, this work provides innovative insight into comparing different synthesis methods and their influence on materials' properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.