Abstract

Tuning the stator resistance of induction motors is very important, especially when it is used to implement direct torque control (DTC) in which the stator resistance is a main parameter. In this paper, an artificial network (ANN) is used to accomplish tuning of the stator resistance of an induction motor. The parallel recursive prediction error and backpropagation training algorithms were used in training the neural network for the simulation and experimental results, respectively. The neural network used to tune the stator resistance was trained on-line, making the DTC strategy more robust and accurate. Simulation results are presented for three different neural-network configurations showing the efficiency of the tuning process. Experimental results were obtained for one of the three neural-network configurations. Both simulation and experimental results showed that the ANN have tuned the stator resistance in the controller to track actual resistance of the machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.