Abstract

The slow kinetics of oxygen surface exchange hinders the efficiency of high-temperature oxygen electrocatalytic devices such as solid oxide fuel cells and oxygen separation membranes. Systematic investigations of material properties that link to catalytic activity can aid in the rational design of highly active cathode materials. Here, we explore LaCoO3 thin films as a model system for tuning catalytic activity through strain-induced changes in the Co spin state. We demonstrate that Raman spectroscopy can be used to probe the Co-O bond strength at different temperatures to determine the relative spin occupancies of LaCoO3. We find that strain can be used to reduce the spin transition temperature and promote the occupation of higher spin states that weaken the Co-O bond. The decrease in Co-O bond strength and increased spin moment of the thin films result in significant enhancements of the oxygen surface exchange kinetics by up to 2 orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.