Abstract

HypothesisIn nanocomposites, several factors govern the enhancement of properties when a nanofiller is added into a polymer matrix. Previously, our group have demonstrated that stabilizing nanoparticles improves the dispersion of nanoparticles in a hydrogel, but their effect on viscoelastic properties remain unclear. We hypothesized that coating the nanoparticles will block matrix-nanoparticle interactions, which would then affect the transfer of stress when the hydrogel is subjected to stress. ExperimentTo this end, we investigated the effects that nanofillers coated with polyethylene glycol (PEG) of variable molar mass have on the properties of physical hydrogels made from poly(2-hydroxyethyl methacrylate). PEG with molar masses of 6, 20, and 35 kDa were used at different concentrations and the viscoelastic properties of the resulting hydrogels were studied and compared with control hydrogels with and without nanofillers. FindingsThe coated nanofiller resulted in enhanced dispersion stabilization as the molar mass and concentration of the PEG increased. However, there were noticeable changes in viscoelastic properties. In general, the nanocomposite hydrogels exhibited reduced shear modulus, greater creep, and more accentuated shear thinning behaviour. These effects were attributed to hindered matrix-nanoparticle interactions because of the PEG coating, an increased slippage of the PHEMA chains as well as a plasticizing effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.