Abstract

Nanoindentation methodology was used to measure the hardness of Cu/Ta crystalline/amorphous nanostructured multilayers (CANMs) before and after He ion-implantation at room temperature. These CANMs have a constant modulation period (λ=25nm) but different modulation ratios (η=hTa / hCu) spanning from 0.11 to 1.0. It is found that in sharp contrast to previously reported Cu/Cu-Zr CANMs by Zhang et al. [9], the He-irradiated Cu/Ta samples exhibit much greater microstructure stability without radiation-induced devitrification (RID) of glassy Ta nanolayers at smaller η (except the sample at η=1.0). Both the as-deposited and irradiated Cu/Ta CANMs manifest the monotonically increased hardness with decreasing η, however, there is an unexpected transition from size-dependent irradiation hardening at η<1.0 to softening at η≥1.0 caused by a competition between dislocation-bubble interactions in crystalline nanolayers and RID in glassy nanolayers. These findings not only provide fundamental understanding of the radiation-induced defect effect on plastic characteristics of CANMs, but also offer guidance for their microstructure sensitive design for performance optimization at a critical modulation ratio under extreme conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.