Abstract

Reproducible fabrication of concave cubic gold nanoparticles with precise control over size, concaveness, and aspect ratio is important because the nanoscale structural characteristics can influence their plasmonic and catalytic properties. However, this is particularly challenging because the number of synthetic parameters involved in the fabrication strategy adds complexity to the reaction mechanism. Here, we introduce a simplified seed-mediated method and uncover the unknown conceptual insights on how the different halides and their concentration influence the surface structure and stability of underpotential silver monolayer deposited on the high energy facets of nanoparticles. The results reveal that adding Br− and I− ions to growth solution offers a predominant way to control the reaction kinetics and engineering nanoparticles with a predefined size, morphology, concaveness, aspect ratio, and plasmonic properties. Using spectroscopy and microscopy techniques, we shed new light on the reaction kinetics of concave cubic gold nanoparticles using the combined influence of silver underpotential deposition and halides. The strategy developed here can be expanded to fabricate gold nanoparticles of complex geometries. The results from our electromagnetic calculations suggest that the self-assembled superstructure of concave cubic gold nanoparticles can be more appealing for developing an ultra-sensitive sensing platform than to self-assembled superstructures of truncated cubic gold nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call