Abstract
The packing and connectivity of tetrahedral units are central themes in the structural and electronic properties of a host of solids. Here, we report one-dimensional (1D) chains of GeX2 (X = S or Se) with modification of the tetrahedral connectivity at the single-chain limit. Precise tuning of the edge- and corner-sharing modes between GeX2 blocks is achieved by diameter-dependent 1D confinement inside a carbon nanotube. Atomic-resolution scanning transmission electron microscopy directly confirms the existence of two distinct types of GeX2 chains. Density functional theory calculations corroborate the diameter-dependent stability of the system and reveal an intriguing electronic structure that sensitively depends on tetrahedral connectivity and composition. GeS2(1-x)Se2x compound chains are also realized, which demonstrate the tunability of the system's semiconducting properties through composition engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.