Abstract
Glass-embedded spherical silver nanoparticles were irradiated by pairs of delayed femtosecond laser pulses. The influence of intensity, relative polarization (parallel or orthogonal) and time delay between the pulses was investigated. We found a delay-dependent reversal of the orientation of prolate nanoparticles produced in the low-intensity regime: at very short time delays up to 10 ps between pulse pairs the polarization direction of the second-hitting pulse defines the particles’ symmetry axes; in an intermediate regime between 10 and 20 ps no optical dichroism is found at all; at more than 20 ps delay between the pulses, finally, the transformed nanoparticles are oriented along the polarization direction of the first-hitting pulse. Also, in the quite different situation of the high-intensity regime using parallel-polarized pulse pairs, where normally oblate particles are created, isotropic spectral changes (i.e., no dichroism) after irradiation were observed at delay times around 20 ps. The possible physical background of this apparently very special inter-pulse delay of around 20 ps is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.