Abstract
Three block polymers, viz., L31, L64, and P123, were used as reducing agents for the synthesis of gold (Au) nanoparticles (NPs) to determine the effect of their micelle size, structure transitions, and environments on the mechanism of the reduction process leading to the overall morphology of Au NPs. Aqueous phase reduction was monitored with time at constant temperature and under the effect of temperature variation from 20 to 70 °C by simultaneous measurement of UV–visible spectra. The ligand to metal charge transfer (LMCT) band around 300 nm, due to a charge transfer complex formation between the micelle surface cavities and AuCl4– ions, and Au NP absorbance around 550 nm, due to the surface plasmon resonance, were simultaneously measured to understand the mechanism of the reduction process and its dependence on the micelle structure transitions and environment of TBPs micelles. L64 micelles showed dramatic shift in the LMCT band from lower to higher wavelength due to an increase in the reduction potential of surface cavities induced by the structure transitions under the effect of temperature variations. This effect was not observed for micelles of either L31 or P123 and is explained on the basis of a difference in their micelle environments. The morphology of Au NPs thus evolved from the reduction process was studied with the help of TEM and SEM studies. Smaller micelle size with few surface cavities, as in L31, produced small NPs in comparison to large micelles with several surface cavities as in P123. Structure transitions of L64 demonstrated direct influence on the final morphology of NPs, and stronger transitions produced fused and deformed NPs in comparison to weaker transitions. The results showed that efficient reduction by the surface cavities and uninterrupted nucleation without structure transitions lead to well-defined morphologies in the presence of P123 micelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.