Abstract

AbstractRing‐opening metathesis polymerization (ROMP) has become one of the most important living polymerizations. Cyclopropenes (CPEs) remain underexplored for ROMP. Described here is that the simple swap of 1‐methyl to 1‐phenyl on 1‐(benzoyloxymethyl)CPEs elicited strikingly different modes of reactivity, switching from living polymerization to either selective single‐addition or living alternating ROMP. The distinct reactivity stems from differences in steric repulsions at the Ru alkylidene after CPE ring opening. Possible olefin or oxygen chelation from ring‐opened CPE substituents was also observed to significantly affect the rate of propagation. These results demonstrate the versatility of CPEs as a new class of monomers for ROMP, provide mechanistic insights for designing new monomers with rare single‐addition reactivity, and generate a new functionalizable alternating copolymer scaffold with controlled molecular weight and low dispersity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.