Abstract

Lead sulfide (PbS) quantum dots (QDs) have shown promising performance as a sensitizer in infrared-to-visible photon upconversion systems. To investigate the key design rules, we compare three PbS-sensitized upconversion systems using three mediator molecules with the same tetracene triplet acceptor at different distances from the QD. Using transient absorption spectroscopy, we directly measure the triplet energy-transfer rates and efficiencies from the QD to the mediator and from the mediator to the emitter. With increasing distance between the mediator and PbS QD, the efficiency of the first triplet energy transfer from the QD to the mediator decreases because of a decrease in the rate of this triplet energy-transfer step, while the efficiency of the second triplet energy transfer from the mediator to the emitter increases because of a reduction in the QD-induced mediator triplet state decay. The latter effect is a result of the slow rate constant of the second triplet energy-transfer process, which is 3 orders of magnitude slower than the diffusion-limited value. The combined results lead to a net decrease of the steady-state upconversion quantum yield with distance, which could be predicted by our kinetic model. Our result shows that the QD/mediator interface affects both the first and second triplet energy transfer processes in the photon upconversion system, and the QD/mediator distance has an opposite effect on the efficiencies of the first and second triplet energy transfer. These findings provide important insight for the further rational improvement of the overall efficiency of QD-based upconversion systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.