Abstract

Highly dispersive Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized by a simple solvothermal route. A low cost, non-vacuum method was used to deposit CZTS nanoparticle ink on glass substrates by a doctor blade process followed by selenization in a tube furnace to form Cu2ZnSn (S,Se)4 (CZTSSe) layers. Different selenization conditions and particle concentrations were considered in order to improve the crystallinity and surface morphology; the annealing temperature was varied between 400°C and 550°C and the annealing time was varied between 5 min and 20 min in a selenium-nitrogen atmosphere. The influence of annealing conditions on structural, compositional, optical and electrical properties of CZTSSe thin films was studied. An improvement in the structural and surface morphology was observed with increasing of annealing temperature (up to 500°C). An enhancement in the crystallinity and surface morphology were observed for thin films annealed for 10–15 min. Absorption study revealed that the band gap energy of as-deposited CZTS thin film was approximately 1.43 eV, while for CZTSSe thin films it ranged from 1.15 eV to 1.34 eV at different annealing temperatures, and from 1.33 eV to 1.38 eV for different annealing times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.