Abstract

The focus of this work is on the nature of self-healing of ionically modified rubbers obtained by reaction of brominated poly(isobutylene-co-isoprene) rubber (BIIR) with various alkylimidazoles such as 1-methylimidazole, 1-butylimidazole, 1-hexylimidazole, 1-nonylimidazole, and 1-(6-chlorohexyl)-1H-imidazole. Based on stress–strain and temperature dependent DMA measurements, a structural influence of the introduced ionic imidazolium moieties on the formation of ionic clusters and, as a consequence, on the mechanical strength and self-healing behavior of the samples could be evidenced. These results are fully supported by a molecular-level assessment of the network structure (cross-link and constraint density) and the dynamics of the ionic clusters using an advanced proton low-field NMR technique. The results show distinct correlations between the macroscopic behavior and molecular chain dynamics of the modified rubbers. In particular, it is shown that the optimization of material properties with regard to...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.