Abstract

The opposite orientation of the ester spacers in the rodlike ligands L 4C12 (benzimidazole-OOC-phenyl) and L 5C12 (benzimidazole-COO-phenyl) drastically changes the electronic structure of the aromatic systems, without affecting their meridional tricoordination to trivalent lanthanides, Ln(III), and their thermotropic liquid crystalline (i.e., mesomorphic) behaviors. However, the rich mesomorphism exhibited by the complexes [Ln(L 4C12)(NO3)3] (Ln=La-Lu) vanishes in [Ln(L 5C12)(NO3)3], despite superimposable molecular structures and comparable photophysical properties. Density functional theory (DFT) and time-dependant DFT calculations performed in the gas phase show that the inversion of the ester spacers has considerable effects on the electronic structure and polarization of the aromatic groups along the strands, which control residual intermolecular interactions responsible for the formation of thermotropic liquid-crystalline phases. As a rule of thumb, an alternation of electron-poor and electron-rich aromatic rings favors intermolecular interactions between the rigid cores and consequently mesomorphism, a situation encountered for L 4C12, L 5C12, [Ln(L 4C12)(NO3)3], but not for [Ln(L 5C12)(NO3)3]. The intercalation of an additional electron-rich diphenol ring on going from [Ln(L 5C12)(NO3)3] to [Ln(L 6C12)(NO3)3] restores mesomorphism despite an unfavorable orientation of the ester spacers, in agreement with our simple predictive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.