Abstract
The structural, elastic, piezoelectric, and electronic properties of Li-doped K0.5Na0.5NbO3 (K0.5-xNa0.5-yLix+yNbO3, KNN-L) are calculated. The properties of KNN-L are related to the Li-doping content and the replaced K or Na atoms. The bulk modulus, the shear modulus, and Young's modulus of KNN-L are mostly higher than those of KNN, and the hardness value increases. The Poisson ratio of KNN-L is lower than that of most KNN, and the ductility is reduced. All doped structures are direct band gap semiconductors. K0.5Na0.375Li0.125NbO3 has the largest piezoelectric charge constant, d33 = 44.72 pC/N, in the respective structures, which is 1.5 fold that of K0.5Na0.5NbO3 (29.15 pC/N). The excellent piezoelectric performance of Li-doping KNN-L was analyzed from the insights of elastic and electronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.