Abstract

Over the last few decades, intraperitoneal (IP) local drug delivery, providing high drug concentrations with prolonged retention in the peritoneal cavity, has opened a new horizon for the management of life-threatening peritoneal disorders, such as peritoneal carcinomatosis (PC). However, clinical translation of this strategy is hampered by several hurdles, namely premature clearance of small-sized molecules from the peritoneum, limited distribution within the peritoneal space and inadequate penetration into the target tissues. To address these challenges, incorporation of therapeutic agents into the particulate-based drug delivery systems has brought new hope in this direction. Nonetheless, as yet, there has been no formulation specifically approved for IP delivery. To gain this goal, it is crucial to have a detailed understanding of the correlation between the physicochemical characteristics of particle-based carriers and their biological fate and anticancer efficacy after IP administration. The main focus of this review, therefore, concerns the significance of these characteristics, namely composition, particle size, charge, coating and presence of targeting moieties in the design of carriers for successful IP delivery. Graphical Abstract Physicochemical characteristics of particle-based carriers influence their peritoneal residence time, biological fate and anticancer efficacy after intraperitoneal administration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.