Abstract
A series of three new complexes of the design [(TL)2Ru(BL)](2+), two new complexes of the design [(TL)2Ru(BL)Ru(TL)2](4+), and three new complexes of the design [(TL)2Ru(BL)RhCl2(TL)](3+) (TL = bpy or d8-bpy; BL = dpp or d10-dpp; TL = terminal ligand; BL = bridging ligand; bpy = 2,2'-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) were synthesized and the (1)H NMR spectroscopy, electrochemistry, electronic absorbance spectroscopy, and photophysical properties studied. Incorporation of deuterated ligands into the molecular architecture simplifies the (1)H NMR spectra, allowing for complete (1)H assignment of [(d8-bpy)2Ru(dpp)](PF6)2 and partial assignment of [(bpy)2Ru(d10-dpp)](PF6)2. The electrochemistry for the deuterated and nondeuterated species showed nearly identical redox properties. Electronic absorption spectroscopy of the deuterated and nondeuterated complexes are superimposable with the lowest energy transition being Ru(dπ) → BL(π*) charge transfer in nature (BL = dpp or d10-dpp). Ligand deuteration impacts the excited-state properties with an observed increase in the quantum yield of emission (Φ(em)) and excited-state lifetime (τ) of the Ru(dπ) → d10-dpp(π*) triplet metal-to-ligand charge transfer ((3)MLCT) excited state when dpp is deuterated, and a decrease in the rate constant for nonradiative decay (knr). Choice of ligand deuteration between bpy and dpp strongly impacts the observed photophysical properties with BL = d10-dpp complexes showing an enhanced Φ(em) and τ, providing further support that the lowest electronic excited state populated via UV or visible excitation is the photoactive Ru(dπ) → dpp(π*) CT excited state. The Ru(II),Rh(III) complex incorporating the deuterated BL shows increased hydrogen production compared to the variants incorporating the protiated BL, while demonstrating identical dynamic quenching behaviors in the presence of sacrificial electron donor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.