Abstract
In this study, we demonstrate that plasma treatment can be a facile and environmentally friendly approach to perform surface modification of graphitic carbon nitride (g-CN), leading to a remarkable modulation on its photocatalytic activity. The bulk properties of g-CN, including the particle size, structure, composition, and electronic band structures, have no changes after being treated by oxygen or nitrogen plasma; however, its surface composition and specific surface area exhibit remarkable differences corresponding to an oxygen functionalization induced by the plasma post-treatment. The introduced oxygen functional groups play a key role in reducing the recombination rate of the photoexcited charge carries. As a consequence, the oxygen-plasma-treated sample shows a much superior photocatalytic activity, which is about 4.2 times higher than that of the pristine g-CN for the degradation of rhodamine B (RhB) under visible light irradiation, while the activity of nitrogen-plasma-treated sample exhibits a slight decrease. Furthermore, both of the plasma-treated samples are found to possess impressive photocatalytic stabilities. Our results suggest that plasma treatment could be a conventional strategy to perform surface modification of g-CN in forms of both powders and thin films, which holds broad interest not only for developing g-CN-based high-performance photocatalysts but also for constructing photoelectrochemical cells and photoelectronic devices with improved energy conversion efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.