Abstract

By submonolayer insertion of Au, Pt, or Pd into Ta/CoFeB/MgO/Ta heterostructures, we tune the perpendicular magnetic anisotropy and the coercive field of the ferromagnetic layer. We demonstrate that this has a major influence on the spin Hall switching current density and its dependence on the external magnetic field. Despite a rather small effective spin Hall angle of θSH≈−0.07, we obtain switching current densities as low as 2×1010 A/m2 with a 2 Å Au interlayer. We find that the Dzyaloshinskii-Moriya interaction parameter D is reduced with Au or Pd interlayers, and the perpendicular anisotropy field is reduced by an order of magnitude with the Pd interlayer. The dependence of the switching current density on the current pulse width is quantitatively explained with a domain wall nucleation and propagation model. Interface engineering is thus found to be a suitable route to tailor the current-induced magnetization switching properties of magnetic heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.