Abstract

By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.