Abstract

The enargite phase of Cu3AsS4 (ENG) is an emerging photovoltaic material with a ∼1.4 eV bandgap and is composed of earth abundant elements with favorable defect properties arising from the differing ionic radii of the constituent elements. Unfortunately, ENG-based photovoltaic devices have experimentally been shown to have low power conversion efficiencies, possibly due to defects in the material. In this joint computational and experimental study, we explore the defect properties of ENG and employ synthesis approaches, such as silver alloying, to reduce the density of harmful defects. We show that shallow copper vacancies (VCu) are expected to be the primary defects in ENG and contribute to its p-type character. However, as shown through photoluminescence (PL) measurements of synthesized ENG, a large mid-bandgap PL peak is present at ∼0.87 eV from a band edge, potentially caused by a copper- or sulfur-related defect. To improve the properties of ENG films and mitigate the mid-bandgap PL, we employed an amine-thiol molecular precursor-based synthesis approach and utilized silver alloying of ENG films. While silver alloying did not affect the mid-bandgap PL peak, it increased grain size and lowered film porosity, improving device performance. In conclusion, we found that incorporating silver such that [Ag]/([Ag] + [Cu]) is 0.05 in the film using an amine-thiol based molecular precursor route with As2S3 as the arsenic source resulted in improved photovoltaic device performance with a champion device of efficiency 0.60%, the highest reported efficiency for an Cu3AsS4 (ENG)-based device to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call