Abstract

Tuning of nonlinear optical responses is the essence to many photonics and optoelectronics applications. Due to the low-dimensionality and dispersion of massless Dirac Fermions, the nonlinear optical susceptibilities of graphene can be readily controlled via electrical gating. Based on the quantum interference between multi-photon transition pathways, the tuning mechanism of graphene nonlinearity is intrinsically different from most other systems. The phenomenon enables investigations into some nonlinear optical processes from fundamental regards. It also exhibits appealing features contrasting conventional materials, which can be desirable for novel device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.