Abstract

Amino acids are important compounds for GO functionalization because they can improve GO properties for many applications ranging from biomedicine to depollution. However, amino acids can act as nucleophiles or as reducing agents for GO functionalization or reduction, respectively. Hence, we systematically studied the GO functionalization/reduction using glycine as a model amino acid under basic conditions at room temperature. Attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy, and Raman spectroscopy were used to characterize the modified GO with glycine. We found that low glycine concentrations produced an epoxide ring opening reaction, whereas an increase in glycine concentration led to GO reduction. The basic medium allowed to conserve the carboxylic acid groups, whereas the GO reduction mechanism was governed by the partial hydrolysis of epoxide groups and the subsequent reduction of carboxylic acids to carbonyls. This article opens up the opportunity to study and control the conditions in which different amino acids could be used for either GO functionalization or GO reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call