Abstract

Successful formation of a three-dimensional (3D) network of incorporated conductive fillers in a polymer matrix leads to achieve an electrically conductive nanocomposite at low filler loading levels. In this work, one- to three-layer edge and basal-functionalized graphene oxide (GO) nanosheets were synthesized via a novel method. Raman spectroscopy was employed to investigate the localization of oxygen-containing groups through the GO nanosheets. Afterward, the synthesized GO nanosheets were dispersed in an aqueous epoxy suspension to produce electrically conductive polymer nanocomposites. The formation of the interconnected 3D network structure of GO nanosheets through the epoxy matrix was studied by employing rheological approaches and imaging techniques. We postulated that oxygen-containing groups’ localization can effectively impact the polymer–GO nanosheet interactions, which, in turn, affect the 3D network formation of the nanosheets through the polymeric medium. After in situ thermal reduction of p...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call