Abstract

To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (T_{N}) in these materials. Using the symmetry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher T_{N} in hexagonal ferrites and manganites, because the K_{3} structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between T_{N} and the tolerance factor and a power-law relation between T_{N} and the K_{3} distortion amplitude. Following the analysis, a record-high T_{N} (185K) among hexagonal ferrites was predicted in hexagonal ScFeO_{3} and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call