Abstract

The diffraction limit of electromagnetic waves restricts the formation of sub-wavelength spots. The feasibility to generate scattered beams of light with a high-intensity main lobe, a weak sub-diffracting waist, and a very low divergence angle, named Photonic nanojets, was demonstrated traditionally with spherical particles. Various practical applications require the creation of different types of photonic jets or electromagnetic streams with specific characteristics and properties. For instance, photonic jets can be applied to ease the coupling into the optical waveguides. In this case, photonic jets play the role of a coupling element similar to the lens, grating coupler or prism. To address this challenge, we study the Fresnel Zone Plate (FZP) of rings-like shape. We show that the Babinet principle can be applied for studying the complementary diffractive structures for the formation of near-field photonic jets on a facet of the optical waveguide. Using COMSOL Multiphysics, we built a model of the Fresnel Zone Plate structure based on rings and demonstrate the applicability of Babinet’s principle for the formation of photonic jets in the near-infrared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.