Abstract

Due to a very low mixing entropy, most of the polymer pairs are immiscible. As a result, mixing polymers of different natures in a typical mechanical recycling process leads to materials with multiple interfaces and scarce interfacial adhesion and, consequently, with unacceptably low mechanical properties. Adding nanoparticles to multiphase polymeric matrices represents a viable route to mitigate this drawback of recycled plastics. Here, we use low amounts of organo-modified clay (Cloisite® 15A) to improve the performance of a ternary blend made of high-density polyethylene (HDPE), polypropylene (PP), and polyethylene terephtalate (PET). Rather than looking for the inherent reinforcing action of the nanofiller, this goal is pursued by using nanoparticles as a clever means to manipulate the micro-scale arrangement of the polymer phases. Starting from theoretical calculations, we obtained a radical change in the blend microstructure upon the addition of only 2-wt.% of nanoclay, with the obtaining of a finer morphology with an intimate interpenetration of the polymeric phases. Rather than on flexural and impact properties, this microstructure, deliberately promoted by nanoparticles, led to a substantial increase (>50 °C) of a softening temperature conventionally defined from dynamic-mechanical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.