Abstract

This work investigated the morphological behavior of an acrylate-based metallo-supramolecular polymer system. RAFT (reversible addition–fragmentation chain transfer) polymerization techniques were used to synthesize low molar mass, linear prepolymers of n-butyl acrylate and a 2,6-bis(1′-methylbenzimidazolyl)pyridine–acrylate monomer (MeBIP–Ac) of varying concentration (2–10%). This synthesis incorporated a systematic increase of cross-link points (MeBIP ligands) pendent to the polymer backbone. A zinc(II) salt (Zn(ClO4)2) complexed with the pendent MeBIP ligands in a 1:2 ratio to form cross-linked polymers as free-standing films. The morphology of the neat films as well as those with added unbound MeBIP–zinc–MeBIP metal–ligand (ML) complex were characterized using transmission electron microscopy (TEM), HAADF-STEM (high angle annular dark field scanning transmission electron microscopy), energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.