Abstract

We report on the effects of thermal treatment of biochar embedded in epoxy-based composites on their microwave electrical properties, linking such properties to the material structure investigated by Raman, X-ray photoelectron spectroscopy, and X-ray diffraction. Annealing temperatures in the range 900–1500 °C and biochar concentrations in the epoxy matrix in the range from 5 to 25 wt.% were investigated. The microwave analysis, in the range from 250 MHz to 6 GHz, allowed us to determine the complex permittivity of composites and, through a proper deconvolution technique, to determine the contribution of biochar inclusions alone. High values of real permittivity (up to 220) and conductivity (up to 17 S/m) were evaluated for the biochar particles at 5 GHz, after the 1500 °C thermal treatment. A clear correlation between electrical properties and the biochar microstructure emerged from the dataset, with real permittivity and conductivity increasing as carbon inclusions transform from amorphous to nanocrystalline graphite. Conversely, the percentage of aromatic carbon has a weaker influence on the microwave properties. This study opens to the possibility of tailoring the high-frequency properties of biochar and biochar composites through proper thermal treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call