Abstract

We report the controlled incorporation of perovskite, BaSnO3 (BSO), and double-perovskite, YBa2NbO6 (YBNO), nanocolumnar structures into a YBa2Cu3O7−δ (YBCO) film matrix by controlling the target rotation speed. A surface modified target approach has been employed to deposit YBCO+BSO and YBCO+YBNO nanocomposite films using a laser ablation technique. The effect of target rotation speed on the microstructure and subsequently on the superconducting properties has been studied in detail. The density of BSO and YBNO nanocolumnar structures is found to depend on the target rotation speed, which subsequently affects the vortex pinning properties of the superconducting films in the absence and presence of applied magnetic fields. Three rotation speeds, 3, 2 and 1 s/rot., have been attempted in this study. Compared to pure YBCO, the YBCO+BSO and YBCO+YBNO nanocomposite films exhibit superior in-field critical current density (JC) and also exhibit a strong JC peak for H ∥ c-axis, indicating strong c-axis pinning. The irreversibility line has also been found to improve significantly in the nanocomposite films. For both the target combinations (YBCO+BSO and YBCO+YBNO), the target rotation speed of 2 s/rot. has been found to give the optimum superconducting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.