Abstract

Undoped and Mn+Ni doped ZnO nanopowders were synthesized using a simple soft chemical route by varying the Ni doping level (1, 3, 5 and 7 at.%) and keeping the Mn doping level (10 at.%) constant. X-ray diffraction studies reveal that the incorporated Ni2+ ions form a secondary phase of cubic NiO beyond the Ni doping level of 3 at.%, which is also confirmed by Fourier transform infrared spectroscopy. The band gap of the nanopowders increases (from 3.32 to 3.44 eV) up to 3 at.% of Ni doping and decreases with further doping. ZnO:Mn:Ni nanopowders with 3 at.% of Ni concentration exhibit good antibacterial efficiency. The variation in the size of the nanoparticles, as observed from the TEM images and hydroxyl radicals as evidenced from the photoluminescence results, clearly substantiate the discussion on the antibacterial efficiency of the synthesized nanopowders. Magnetic properties of the synthesized nanopowders were studied using a vibrating sample magnetometer, and the results showed that the doping of Mn and Ni largely influences the magnetic properties of ZnO nanopowders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.