Abstract

Ionomers are polymers containing a low mole fraction of ionic groups bound to the polymer backbone. These ionic groups produce major changes in their structure and mechanical properties. Recently, we introduced a new family of crosslinked poly(Bd)/poly(Bd-co-MAA) core shell nanoparticles (1,3-butadiene and methacrylic acid) that could be ionically crosslinked and cast as nanostructured ionomer films from aqueous dispersions [Pinprayoon et al., Soft Matter, 2011, 7, 247]. The MAA units in the core-shell particles were neutralised by Zn2+. Here, we explore the structure-property relationships for these new architecturally controlled nanocomposites by investigating 6 new poly(Bd)/poly(Bd-co-MAA) dispersions and films. In this study we varied the extent of covalent crosslinking in the core and the shell at constant ionic crosslinking for the first time. We used dynamic mechanical thermal analysis to establish a general phase map for the new nanostructured ionomers. Stress-strain data show that our nanostructured films have well controlled, and adjustable, modulus and strain at break values. The data show that the core-shell nanoparticle geometry allows the often observed trade-off between elasticity and ductility to be tuned in a manner that is not possible for conventional ionomers. We show that the chain transfer agent (CTA) concentrations used during the preparation of the nanoparticle cores and shells can be used to independently tune the mechanical properties of the films. This is due to variation of the extents of covalent crosslinking. The results of this study should apply to other covalently crosslinked core-shell nanoparticles containing RCOOH groups in the particle shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call