Abstract

The possibility of altering the phase equilibria of multicomponent oxide systems through precise control of configurational entropy has opened a platform with unlimited possibilities to fine-tune material properties. The current work is aimed at tailoring the mechanical and thermal properties of (MgNiCoCuZn)O by an intelligent design of constituent phase structure resulting from controlled cooling from the stabilization temperature. Based on the cooling rates, the amount of CuO nucleation was found to vary between 5.4 and 12.3 wt%, along with a corresponding decrease in Cu2+ content in the matrix. It was observed that with the decrease in Cu2+ ion concentration in the matrix, the Young’s modulus and hardness increased by 33% and 26%, respectively, along with a corresponding decrease in the coefficient of thermal expansion by 15%. Similarly, an increased nucleation of CuO precipitates led to the improvement of fracture toughness of the material by 15%, while its thermal conductivity remained unaltered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.