Abstract
We report the effect of Ni substitution on the magnetic properties of polycrystalline Ni2+xMn1−xSn (x = 0, 0.05, and 0.1) Heusler alloys using the magnetization and neutron diffraction measurement techniques. The paramagnetic to ferromagnetic transition temperature (Curie temperature, TC) has been tuned with the substitution of Ni at the Mn sites (TC≈ 349, 337, and 317 K for x = 0, 0.05, and 0.1 samples, respectively) without a significant reduction in the magnetic entropy change −ΔSM. For a magnetic field change from 0 to 5 T, −ΔSM of 2.9, 2.5, and 2.2 J kg−1 K−1 have been observed for x = 0, 0.05, and 0.1 samples, respectively. From the neutron diffraction study, it has been found that with increasing x, the Mn site ordered moment decreases. −ΔSM as a function of changing magnetic field and Curie temperature follows the molecular mean field model. The studied Ni2+xMn1−xSn alloys, with their nontoxic constituent elements and low-cost, can be used for magnetic cooling over a wide temperature range of 278–379 K covering room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.