Abstract
The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.
Highlights
Magnetic nanoparticles (MNPs) have been extensively studied over the last half century and continue to sustain interest due to their potential use in fields ranging from high-density data storage [1] to biomedical applications [2,3]
To maintain the practical utility of this review, we have focused on the following parameters that can be manipulated to tune the magnetic properties of the magnetic nanoparticles (MNPs) (Figure 1) using appropriate synthesis methods: (1) size; (2) shape; (3) composition; and (4) shell-core design
In the subsection that follows, we review the important role of size upon the magnetic character of MNPs, and will follow this discussion with subsections describing how shape, composition, and shell-core design can be utilized as parameters to optimize magnetic properties
Summary
Magnetic nanoparticles (MNPs) have been extensively studied over the last half century and continue to sustain interest due to their potential use in fields ranging from high-density data storage [1] to biomedical applications [2,3]. Due to concerns about the toxicity of the elements or compounds involved, the effect of the variation of composition has generally only been examined for ex vivo applications; data related to applications involving biological contact reflect these limitations For implantable biosensors such as glucose monitoring systems, biocompatibility has been a significant challenge. The nature of the coating is an important consideration in such shell-core MNP designs since the coating might enhance or significantly reduce the magnetic properties of the core based on the interaction between the ligand and the nanoparticle surface [7], the relative thickness of the shell, and the size of the nanoparticle being coated [20,21] From this initial example, it is apparent that an understanding of the effectiveness of the various types of MNPs from a specific application-based perspective fails to provide the full picture of how to optimize an MNP system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.