Abstract
Cobalt-doped zinc ferrite is a contemporary material with significant structural and magnetic characteristics. Our study explores the magnetic properties of cobalt-substituted zinc ferrite (ZnxCo1-xFe2O4), synthesized via a simple sol-gel method. By varying the cobalt ratio from 0 to 0.5, we found that zinc substitution impacts both the magnetization and lattice parameters. FTIR analysis suggested the presence of functional groups, particularly depicting an M-O stretching band, within octahedral and tetrahedral clusters. X-ray diffraction analysis confirmed the phase purity and cubic structure. The synthesized materials exhibited an average particle size of 24-75 nm. Scanning electron microscopy revealed the morphological properties, confirming the formation of truncated octahedral particles. In order to determine the stability, mass loss (%), and thermal behavior, a thermal analysis (thermogravimetric analysis (TGA)/differential thermal analysis (DTA)) was performed. The magnetic properties of the synthesized ferrites were confirmed via a vibrating sample magnetometer (VSM). Finally, the highest saturated magnetization and lowest coercivity values were observed with higher concentrations of the cobalt dopant substituting zinc. The synthesized nanomaterials have good stability as compared to other such materials and can be used for magnetization in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.