Abstract

In this article we present the fabrication of freestanding thin-film nanobridges of Ir. We perform magnetoconductance (MC) measurements of atomic contacts and monoatomic chains of Ir, realized by the mechanically controlled break-junction method. We observe continuous changes of the MC on the field scale of several tesla, as observed earlier for atomic-size contacts of two other strong paramagnets, Pd and Pt. The amplitude and the shape of the MC depend on the orientation of the magnetic field as well as on subtle details of the atomic arrangement, as confirmed by stretching studies of the contacts. Both positive dominant MC and negative dominant MC occur and are attributed to collinear or noncollinear alignment of the magnetic moments of the electrodes, respectively. By careful manipulation of the chain geometry we are able to study the transition between these two cases, which is hallmarked by a complex MC behavior. For special arrangements the MC almost vanishes. Our findings are in agreement with recent calculations of the geometry dependence of the magnetic anisotropy energy and open a route to tailor the MC behavior as required for particular applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.