Abstract

In the present study, semiempirical and density functional molecular orbital calculations are performed on fullerene derivatives with varying reduction potentials, successfully used as an electron acceptor in bulk heterojunction solar cells. The geometries of all the compounds were optimized with the semiempirical PM3 method. Density functional theory (DFT) single-point calculations, B3LYP/3-21G*, have been carried out with the aim to investigate the energy levels of the frontier orbitals. We have correlated the theoretical lowest unoccupied molecular orbital (LUMO) levels of different fullerenes with the open-circuit voltage of the photovoltaic device based on the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)]–1,4-phenylenevinylene (MDMO–PPV) with the acceptor molecules. We have also investigated the influence of new substituents on the LUMO level of the parent fullerene showing the possibility to further increase the open-circuit voltage of the MDMO–PPV:fullerene device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.