Abstract

Oxygen vacancies in metal oxides can serve as electron trap centers to capture CO2 and lower energy barriers for the electrochemical CO2 reduction reaction (CO2RR). Under aqueous electrolytes, however, such charge-enriched active sites can be occupied by adsorbed hydrogen (H∗) and lose their effectiveness for the CO2RR. Here, we develop an efficient catalyst consisting of Cu-doped, defect-rich ZnO (Cu–ZnO) for the CO2RR, which exhibits enhanced CO Faradaic efficiency and current density compared to pristine ZnO. The introduced Cu dopants simultaneously stabilize neighboring oxygen vacancies and modulate their local electronic structure, achieving inhibition of hydrogen evolution and acceleration of the CO2RR. In a flow cell test, a current density of more than 45 ​mA ​cm−2 and a CO Faradaic efficiency of > 80% is obtained for a Cu–ZnO electrocatalyst in the wide potential range of −0.76 ​V to −1.06 ​V vs. Reversible Hydrogen Electrode (RHE). This work opens up great opportunities for dopant-modulated metal oxide catalysts for the CO2RR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.