Abstract

Controlling the internal structures of single-chain nanoparticles (SCNPs) is an important factor for their targeted chemical design and synthesis, especially in view of nanosized compartments presenting different local environments as a main feature to control functionality. We here design SCNPs bearing near-infrared fluorescent dyes embedded in hydrophobic compartments for use as contrast agents in pump-probe photoacoustic (PA) imaging, displaying improved properties by the location of the dye in the hydrophobic particle core. Compartment formation is controlled via single-chain collapse and subsequent crosslinking of an amphiphilic polymer using external crosslinkers in reaction media of adjustable polarity. Different SCNPs with hydrodynamic diameters of 6-12nm bearing adjustable label densities are synthesized. It is found that the specific conditions for single-chain collapse have a major impact on the formation of the desired core-shell structure, in turn adjusting the internal nanocompartments together with the formation of excitonic dye couples, which in turn increase their fluorescence lifetime and PA signal generation. SCNPs with the dye molecules accumulateat the core also show a nonlinear PA response as a function of pulse energy-a property that can be exploited as a contrast mechanism in molecular PA tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.