Abstract

We report that the lattice constant of Dy$_2$Ge$_{2-x}$Si$_x$O$_7$ ($x=0, 0.02, 0.08, 0.125$) can be systematically reduced by substituting the non-magnetic germanium ion in the cubic pyrochlore oxide with silicon. A multi-anvil high-pressure synthesis was performed up to 16 GPa and 1100 $^\circ$C to obtain polycrystalline samples in a solid-state reaction. Measurements of magnetization, ac susceptibility, and heat capacity reveal the typical signatures of a spin-ice phase. From the temperature shift of the peaks, observed in the temperature-dependent heat capacity, we deduce an increase of the strength of the exchange interaction. In conclusion, the reduced lattice constant leads to a changed ratio of the competing exchange and dipolar interaction. This puts the new spin-ice compounds closer towards the phase boundary of short-range spin-ice arrangement and antiferromagnetic long-range order consistent with an observed reduction of the monopole energy scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call