Abstract

In recent years, the need for portable, low-cost, and eco-friendly devices for testing and monitoring has arisen. Paper-based devices have emerged as a response to these needs due to the properties induced by capillarity, flexibility, disposability, and biodegradability. In this work, the authors explored the possibility of tuning the hygro-mechanical response of paper-based cantilever beams using glycerol. A lumped-parameter model with non-linear stiffness is used to describe the dynamic response of the beams using three parameters. An experimental method based on resonance frequency tests is used to study the influence of glycerol on the dynamic response of four different beam configurations. The obtained results demonstrate that the resonance frequency of paper-based mechanical systems can be easily tuned by the imbibition of a glycerol–water solution. This study could lead to the development of tunable paper-based mechanical systems for specific applications such as energy harvesters and hygro-mechanical-based sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call