Abstract

A series of poly(lauryl methacrylate)–poly(methyl methacrylate-stat-lauryl methacrylate) (PLMAx–P(MMA-stat-LMA)y) diblock copolymer nanoparticles were synthesized via RAFT dispersion copolymerization of 90 mol % methyl methacrylate (MMA) with 10 mol % lauryl methacrylate (LMA) in mineral oil by using a poly(lauryl methacrylate) (PLMA) precursor with a mean degree of polymerization (DP) of either 22 or 41. In situ1H NMR studies of the copolymerization kinetics suggested an overall comonomer conversion of 94% within 2.5 h. GPC analysis confirmed a relatively narrow molecular weight distribution (Mw/Mn ≤ 1.35) for each diblock copolymer. Recently, we reported an unexpected morphology constraint when targeting PLMA22–PMMAy nano-objects in mineral oil, with the formation of kinetically trapped spheres being attributed to the relatively high glass transition temperature (Tg) of the PMMA block. Herein we demonstrate that this limitation can be overcome by (i) incorporating 10 mol % LMA into the core-forming block and (ii) performing such syntheses at 115 °C. This new strategy produced well-defined spheres, worms, or vesicles when using the same PLMA22 precursor. Introducing the LMA comonomer not only enhances the mobility of the core-forming copolymer chains by increasing their solvent plasticization but also reduces their effective glass transition temperature to well below the reaction temperature. Copolymer morphologies were initially assigned via transmission electron microscopy (TEM) studies and subsequently confirmed via small-angle X-ray scattering analysis. The thermoresponsive behavior of PLMA22–P(0.9MMA-stat-0.1LMA)113 worms and PLMA22–P(0.9MMA-stat-0.1LMA)228 vesicles was also studied by using dynamic light scattering (DLS) and TEM. The former copolymer underwent a worm-to-sphere transition on heating from 20 to 170 °C while a vesicle-to-worm transition was observed for the latter. Such thermal transitions were irreversible at 0.1% w/w solids but proved to be reversible at 20% w/w solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.